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Stochastic Dynamics of Two-Dimensional Infinite-Particle
Systems
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The time evolution of an open system of infinitely many two-dimensional
classical particles is investigated. Particles are interacting by a singular pair
potential U, and each particle is connected to a heat bath of temperature 7.
The heat baths are represented by independent white noise forces and
Langevin damping terms. Existence of strong solutions to the corresponding
infinite system of stochastic differential equations is proved for initial
configurations with a logarithmic order of energy fluctuations. Gibbs states
for U at temperature T are invariant under time evolution.
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1. INTRODUCTION

The aim of this paper is to initiate the study of certain random perturbations
of two-dimensional nonequilibrium dynamics. The methods of Refs. 3 and
4 are developed further in order to obtain the existence of strong solutions
to the following infinite system of stochastic differential equations. Consider
an infinite configuration w = {(x;, v;); ielI} of two-dimensional labeled
particles interacting by a pair potential U = U(x); x; = x(w) and v; = vi(w)
denote the position and the velocity of the ith particle; 7 is the set of positive
integers. Particles are assumed to be of unit mass, and in addition to the
conservative interparticle forces —grad U(x; — x;), j # i, the nonconserva-
tive force — Ay, and a white noise force are acting on the ith particle. Then
the stochastic differential equations of motion are

do, = — > grad U(x; — x;) dt — v, dt + o dw
j#i (I)
dx, = v; dt, iel
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where w; = wy(t) is a sequence of independent, standard, two-dimensional
Wiener processes, and A and ¢ are nonnegative constants. We shall show that
(I) generates a Markov time evolution in the space &, of infinite configura-
tions with a logarithmic order of energy fluctuation. This stochastic dynamics
can be interpreted as the time evolution of a large classical system connected
to a heat bath of temperature o?/2A. Indeed, a canonical Gibbs state for U
at temperature 7T is time-invariant if and only if 7 = ¢2/2X. If A and ¢ go to
zero, then the stochastic dynamics converges to the classical dynamics,
which was constructed in Ref. 4.

2. PRELIMINARIES

First we have to clarify the meaning of (I). Let R? denote the two-
dimensional Euclidean space with the usual norm |-| and scalar product
(.,.); Z? is the integer lattice in R2. The interaction potential U is assumed
to be a continuously differentiable function U=U(x), x ¢ R?, x # 0, such
that U(x) = U(~x), lim,_,, U(x) = +oo and U(x) = 0if |x| = R; R < +©
is the range of U. To prove existence of solutions we need the following
regularity conditions for U; they are the same as in Ref. 4. There exist
positive constants a, b, ¢, d, 8, L such that: (a) U(x) > 0 if |x| < §,

|x||grad U(x)] < a + bU(x) (E)
(b) at least one of
lgrad U(x)[2 < cU(x) if |x]| > 8 (P)
and
cUx) 2 |x|=*  if |x/ <38 (R)

holds, and (¢) |U(x)| < u and |U(y)| < u imply that
|grad U(x) — grad U(p)] < |x — y|L(1 + u)® (U)

The validity of (E), (U), and one of (P) and (R) will be assumed throughout
this paper. For a discussion of these conditions see Refs. 3 and 4.

The configuration space & is defined as the set of locally finite labeled
configurations w = {(x;, vy); i € I}, where x; = x,(w) and v; = v(w) are two-
dimensional vectors, and the sequence x;(w) of positions has no limit points.
Let & be equipped with the weak topology, i.e., lim o, = w means that
lim x(w,) = x,(w) and lim v(w,) = v,(w) for each ie 1. This topology is a
separable and metric one; the corresponding c-algebra of Borel subsets of
L will be denoted by Z.

The particle number and the total energy of a configuration w in a
y-centered disk of radius p are denoted by

N(w, y,p) = };fy.p(x» (1)
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and

l 1
Hew ) = 3 2 Fuslod| [0 + 3 Sos)Us = )] @
iel j#i
respectively, where £, ,(x) = 1if |x — y| < p, and f, ,(x) = 0 otherwise. The
quantity

H(w) = ngpz[g(lyl)]‘zH(w, ¥, g(|¥]) 3)

is called the logarithmic energy fluctuation of w; here g(w) = 1 + log(1 + w),
where log denotes the natural logarithm. Let us remark that H is a lower semi-
continuous function of w.

The Markov time evolution will be constructed in the subset

Qy = {w; H(w) < +oo} 4

of &; %, = % N 8, denotes the o-algebra of Borel subsets of £,. Since
either of (P) and (R) implies superstability of U, £¢? = {w; H(w) < g} is a
compact subset of £, for each g < +oo.

Suppose now that we are given a sequence of independent, R%-valued
standard Wiener processes w; = wy(f), t = 0, i € I, on a complete probability
space (C, «Z, P); the components of each w; are uncorrelated, w,(0) = 0. We
may and do assume that the realizations of each w; are continuous with
probability one, e.g., C can be chosen as an infinite product of C[0, o)
spaces. %4 denotes the o-algebra generated by the family wis), s < ¢, i€ ],
of random variables.

Now we are in a position to define what is a solution of (I). Let us remark
that particles along a continuous trajectory w, in & preserve their initial
enumeration.

Definition. Consider a stochastic process w,, ¢ > 0 on (C, &, P) with
state space (4, %), i.e., w, = wfc) is a measurable mapping of (C, <7, P)
into (R, %,) for each ¢t > 0. We say that w, is a strong solution of (I) with
initial configuration w if wy = w, w, is &-measurable for each ¢ > 0; further,
almost each trajectory of w, is continuous and

d_ixi(wt) = vi(w;)
v{w) = vlwe) — z fo grad U(xi(ws) — x,(w)) ds

- A f tvi(ws) ds + ow(?) @)

hold for each ¢ > 0, i € I along almost each trajectory w,(c) of w,. A solution
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w, is a tempered solution if H(w(c)) is bounded in finite intervals of time with
probability one.

To avoid the possibility of misunderstanding, we have to clarify notation.
w, is the value of the stochastic process w; at time ¢; w/¢) is the trajectory of
w, corresponding to the random element ¢ € C. However, we do not indicate
dependence of random variables on ¢ in general; relations for w, as a function
of time should be considered for almost each trajectory.

3. MAIN RESULT

Solutions will be constructed as a.s. weak limits of solutions to finite
subsystems. Theorem 1 contains the basic results of Ref. 4 in the particular
case of A = ¢ = 0. Of course, the one-dimensional existence theorems of
Ref. 3 also have similar, stochastic extensions.

Theorem 1. For each w € , there exists a tempered strong solution
w, = ¢(t, w, ¢) of (1) such that w, = w a.s., and this solution is unique in the
sense that P(wc) = &c) for ¢ > 0) = | whenever &, is a tempered strong
solution with @, = w a.s. The ¢ is jointly measurable in ¢, w, ¢, and it is a
Markov process for each w € &,. Moreover, the restriction of ¢(¢, w, ¢) to
any of the subsets £2,? is a stochastically continuous function of w € 4?; this
continuity is uniform in finite intervals of time.

In contrast to the deterministic case of o = 0, here (U) also is needed
in the proof of existence. Without (U) only weak solutions can be con-
structed, i.e., w, is not necessarily &4-measurable. This measurability property
is always needed when stochastic integrals are considered.

In view of Theorem 1, P, = Pyw, A) = P(p(t, w,c) € 4), A€ H,, is a
semigroup of transition probabilities in (R,, %), i.e., the translate p, = uP,
of a probability measure p on (824, %) is given by p(4) = fp(dw) Py(w, A).
Let us remark that &, carries a wide class of probability measures defined
originally on (2, #). For example, if f explpH(w, y, p)] wldw) < exp(gp?) for
p = g(Jy¥]) holds with some positive constants p and ¢, then the Borel-
Cantelli lemma implies directly that u(€2,) = 1. This condition can be verified
easily for such Gibbsian fields where the singularity of the interaction poten-
tial is not weaker than that of U; see Proposition 1 in Ref. 4.

The first problem arising here is certainly the description of time-
invariant probability measures. A probability measure x on (R, %) is a
canonical Gibbs state for U at temperature 7 > 0 if the particles are distri-
buted in R? according to a canonical Gibbsian point field with potential
(1/TYU (i.e., the field is specified by the conditional distributions of points
in finite volumes ¥ given the number of points in } and the configuration
of points outside V; see Refs. 8 and 9), while velocities are completely inde-
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pendent of positions, and the velocity coordinates are identically distributed,
independent Gaussian variables of zero means and variances 7. Of course,
w(82,) = 1 in this case, too.

On the coincidence of canonical and grand canonical Gibbs states see
Ref. 6.

Theorem 2. Let ¢ > 0 in (I); then a canonical Gibbs state u for U at
temperature 7 > 0 is time-invariant, i.e., p = uP, if and only if A > 0 and
T = o?[2A.

To indicate the dependence of the solutions on A and o, let ¢, (¢, w, €)
denote the general solution of (I). The particular case A = o = 0 is of special
interest; the classical solution g(f, w) = @4 o(t, w, ¢) has been constructed in
Ref. 4.

Theorem 3. If A and o go to zero, then g, ,(?, w, ¢) converges in
probability to ¢(7, w).

It seems that the ergodic properties of the stochastic dynamics are nicer
than those of the classical dynamics; such problems are to be discussed in a
forthcoming paper.

4. A PRIORI PROBABILITY BOUND

In this section Proposition 2 of Ref. 4 will be extended to our stochastic
situation; we prove a uniform bound for the distribution of H along solutions
to finite subsystems of (I). Notation and methods follow those in Section 4
of Ref. 4.

Let us consider the motion of a finite number of particles within a
potential barrier /; the external particles are frozen, ¥ < R? is a bounded,
open set of smooth boundary; & = A(x) is a nonnegative and twice con-
tinuously differentiable function if x € V; h(x) = 0 if x ¢ ¥, further, lim h(x)
= +oo when x € V tends to the boundary of V. Let we &,, J = Jy(w) =
{iel; x{w) eV} and define the random trajectory w, = ¢y(t, w, €), t = 0,
by xiw) = xi(w), vi(w,) = 0if | ¢ Jy(w), while

dxi(wy) = viw,) dt,
dv(wy) = — Fy(w,) dt — grad h(x(w,)) dt — ww) dt + adwlt) Jy)

if i € Jy(w) with initial condition x(w) = xy(w), vy(we) = vi(w) for i € Jy(w);
here

F(@) = > grad U(x(&) — x,(®)) ®)

j#i
i.e., the field of external particles is present, too. It is not quite trivial that
(Jv) has a unique «4-measurable (i.e., strong) solution; only local existence
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and uniqueness follow from the finiteness of the total energy Hy(w) by
standard methods. For completeness we reproduce the argument of Exercise
5 in Section 4.5 of Ref. 7. Let 7 = 1(c) denote the random lifetime of the
solution, ¥ A = = min(¢, 7), and observe that the stochastic differential of

) = 3 3 I + 2000 + 3 U0 = %) + 3 Vs = )

i#i
along a solution of (Jy) is just
dHy = =X > |o|?dt + | J| dt + o Y v dw, (6)
- det ieJ
where |J| denotes the cardinality of J = Jy(w). Thus from the Ito lemma [see
(6)] we obtain that

tAg
Hy(win,) < Ho(wo) + 02| J|t + o Zf v; dw; @)
ief vO0
for each ¢t < +o0o with probability one. However, almost each trajectory of a
stochastic integral has the following property: it is either bounded or oscil-
lates between —oo and +oo in a finite interval of time ; thus the lower bounded-
ness of Hy results in lim, ., Hy(w,s,) < +00. Therefore the local existence
theorem implies that P(r < +00) = 0, i.e., (Jy) has a unique global solution,
and gy(f, w, ¢) is an &4-measurable Markov process.
The first step of the proof of Theorem 1 is to extend the stochastic version
(6) of the law of energy conservation to infinite systems. For this we intro-
duce a nonnegative and additive modification W of the total energy. Let
f = /() denote such a twice continuously differentiable nondecreasing
function that:

@Ofw)y =0ifu < —3R; fu) = 1ifu > 0;f(—5R/2) = 1/9; /(—R[2) =
8/9.

(ii) f is convex for u < —R/2 and it is concave if u > —5R/2, i.e., fis
linear if —5R/2 < u < —RJ2.

(iit) There exists a constant d; such that | f'(w)[|* < d,.f()
Ifwe®, yeR? p > 0, then W is defined as

W(w, y, p) = Zf(p — |x: = y)Wiw) ®)
where
Wiw) = 1 + [0if* + 2h(x) + 3 8x fBR — 3|x; — x,]) + z U(x; — x;)

and 8z = a/b if (R) holds, §; = 0 otherwise. Let us remark that Wi(w) = 1
in view of (E) and W is a nondecreasing function of p. The logarithmic
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fluctuation of W is defined as
W) = sup|g(|yD]">W(w, 3, £(5)) ©
Some basic properties of W are summarized in the following lemma:

Lemma 1. There exist constants a;, b,, ¢; depending only on U such
that

W(w, %, p) < a1p*W(w) (10)
whenever x e R%, p > g(|x]|), and further,
H(w) < W(w) < by + c;H(w) + 2 Zh(x,»(w)) 1)
o) < arg(y] + p)| ()" (12)
if [x(w) — y| < p + 5R, and
N(w, x(@), 2R) < 1 + aig(|y| + p)|W(w)["” 13)

if [x(w) — ¥| < p + SR

Proof. Let D, denote the disk of center y € Z? and radius g{}y|); first
we show that there exists such a subset Z,2 of Z2 that only a fixed number of
disks D,, y € Zy?, can have a nonempty intersection, and the union of all
disks Dy, y € Zy?, covers R2 For this set r; = 1, and . ; = r, + g(r,) for
k e I; let n;, denote the smallest integer larger than 8r,/g(r,). For each keI
we choose n;, points from the origin-centered circle of radius r, in such a way
that they form a regular polygon; R,? consists of the above described points,
and Z,” is the set of such y e Z? that |x — y| < 2 for some x € Ry2. Since
lim[g(r,.;) — g(r,)] = 0, it follows easily that Z,? has the property we need;
thus

W(w, x, p) < 2 W(w, y,2( ) < 2 Ww)g*(|y])

<
< W(w)lg(|x] +p+3R+2)+p+ 3R+ 2Pn, (14)

where both sums are over such y € Zy? that |x — y| < p + 3R + 2; n,is the
maximal multiplicity of the covering {D,; y € Z,?} of R2. Since p > g(]x]) in
(14), the subadditivity of g implies (10) directly.

Condition (11) follows from the superstability of U in a similar way as
(10) has been deduced; see Ref. 8 and the proof of Proposition 4 in Ref.
4; (12) and (13) are obviously true.

Now we turn to the problem of time evolution. Let w, denote either a
tempered strong solution of (I) or w, = @u(t, w, ¢) for (Iy); # = 0 in the
definition of W in the first case. We define W'(a, y, p) as the time derivative
of W at & along the classical solution w,?, i.e.,

W,(wtoy y’ P) = (d/dt) W(wtoa y, P)a
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where w,® is the solution of (I) or (Jy) with A = ¢ = 0, respectively. The
explicit expression of W' is given by the corresponding Poisson bracket. In
view of the basic estimate (6) of Ref. 4, there exists a constant K, depending
only on U such that

W@,y p) < Kog(|y] + o)l I7V—(w)]”z(% W@, y,p) + KeW(@, p,p) (15)

holds for each @ = w,, y€R? and p > 0; since dx; = v; dt even if x; ¢ V,
the presence of the external field and of frozen particles does not involve any
change in the proof of (15) in comparison with that of (6) in Ref. 4.

For each k € I and y € Z% we define a stochastic process p,(t), =0, as
the a.s. unique solution of the integral equation

plt) = ke(|y]) — Ko f (3] + |pus))z'(s) ds (16)

where

(1) = f (W] ds

It is easy to check that p,(z) is </-measurable; the trajectories of p, are
differentiable and decreasing, p,.:(t) — pi(t) < g(J¥|) a.s. for each ¢t > 0;
further, 7, = sup{t = 0; p,(¢) = g(|¥])} is a Markov time with respect to </
such that 7, < 7,1 < +o0 and lim 7, = 400 a.s. Put K = K, + ¢%; in view
of the Ito lemma the stochastic differential of e~ **W{(w,, ¥, pi(?)) is

de-EW) = e‘K$[~KW+ W+ (59;) W)p,;] d@t
|
— XKy filv|2dt + 0% Ky fidt + oe” K fu dwyt) (17)
iel iet ieJ

where f; = f(pi(t) — |y — x(w)]), and J = Jy(w) if w, = ¢y(t, @, €) and
J = Iif w, is a tempered solution of (I). Since the sums in (17) are finite in
the sense that f; = 0 apart from a finite number of particles, a straightfor-
ward approximation procedure shows that (17) remains in force even in the
second case. We have to remark that among the stochastic variables p,(¢),
xi(1), vit) only the »; have a proper stochastic differential; thus the twice
continuous differentiability of W is needed only in v;. Therefore (17) certainly
holds whenever ¢t < 7.

Lemma 2. Foreach kel, ye Z2, and u > 0 we have

sup e_KtW(thz,ca Y, Pk(t A 1)) < W(wo, , g(l)")k) +u

t>0

with a probability larger than 1 — e~ 2%
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Proof. Using (15), (16), X = 0, and 1 + fi|v;]? < Wi(w,) [see (8)], we
find that (17) becomes

{exp[—K(t A Tk)]} W(wtl\rk’ Vs Pk(t f\\ Tk)) .
< Wm0 + 3| [ psrams) = [ o) s,

where p; = oe™%%p;. Thus the exponential supermartingale inequality [see (6)
in Section 2.3 and Exercise 5 in Section 2.9 of Ref. 7]

l:SUp(f zpt dW, f Z lﬁllz ds) > u] < e
t20\Y0 ieJ 0 =

with p(s) = p{s) if s < 7, p; = 0 otherwise, implies the statement of the
lemma. To verify the above inequality in the case of J = I, again a standard
approximation procedure is needed.

Observe first that

> > expl—4kg*(|y] <

yeZ? kel

Therefore, replacing u by u + 2kg?(]y|) in Lemma 2, and using also (10), we
obtain that

sup e~ E W @iy, ¥s pilt A 7)) < @y W(wo)k?g2(|y|) + 2kg?(|y]) +u  (18)

t=0

holds simultaneously for each k € 7 and y € Z*2 with a probability larger than
1 — e~ Define now k = k;, ¢ > 0, as the smallest integer &k € I for which

pe(t) > g(ly]); then 7, > ¢ and p(¢) <€ 2g(]p]) as pr-1(#) < g(|¥]); thus,
choosing k as k = k; in (18), it follows that

e_KtW(wt) < 01 W(wo)ktz + 2kt + u (19)
for each's > 0 with probability at least I — e~* On the other hand

205D > k() — K [ 80 + [pu(OD=0) s
whence ’

ke <2+ Kz(@)[1 + gk)] < 2 + Kz(0)2 + 2Vk) (20)

follows by a direct calculation; thus V&, < 2 + 4Kz(f). Substituting the last
inequality into the first part of (20), we obtain that

ke < 2+ Kz(0)(1 + g{[2 + 4K=z(D)]*) 2D
Relations (19) and (21) are summarized in the following lemma:

Lemma 3. Let # > 1 and w > 1 and suppose that W(wy) < w, where
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w;, t = 0, is either a tempered strong solution of (I), or w, = ¢,(¢, w, ¢) for
(Jv). Then there exists a constant M depending only on U such that

P(sup{M‘le‘Mtz’(t) — wll + z(t)gzE)]} < u)‘ =21 —e®
120
the process z(¢) has been defined in (16).

Proof. It is immediate; for notational convenience V'w and vz have
been estimated by w and u, respectively.

Now we are in a position to prove the basic probability estimate for
W(wt).

Proposition 1. For each w > | there exists a continuous function
u(t), t = 0, such that

P{O sup, W(w,) > eXP[qw(t)g(u)]} <e

foreachu > 1, ¢ > 0, whenever W(w,) < w; w, is the same as in Lemma 3;
it is defined before (15). '

Proof. Define z, = z,(t) as the solution of the differential equation
z" = Me™fw + wzg(z) + u] (22)

with initial condition z,(0) = 0; then in view of Lemma 3 we have

0<s<

P[ sup t[W(ws)[l/z > zu’(t)] <e®

It is easy to check that z,(r) < +oo for each ¢ > 0. Therefore it is enough to
show that z,(¢) < r,(¢) for t = 0, where r,(¢) = exp[z;:(*)g(®)] — u, and z;,
is the solution of (22) for u = 1 with initial condition z;;(0) = 1. Observe
that z;; g(u) = log(u + r,) in the time derivative
r/ (1) = MeMw + wzi1g(z11) + 1(r, + we(w)
of r,; further, u, w, g(u), g(z,,) are not less than 1; consequently,
r/(6) > MeM'w + rg(r) + u]l > z,/(t)

whenever z,(t) < r,(t). Since z,(0) < r,(0), this is possible only if z, < r, for
each ¢ > 0, which proves the statement of Proposition 1.

The essential content of Proposition 1 is the weak compactness of the
set of probability measures for solutions w, of (I) or (Jy) such that W(w,) < w.

5. PROOF OF THEOREM 1

We show that there exists the a.s. limit o(t, w, ¢) = lim @y (f, w, ¢) as V'
tends to R?, and ¢ is the unique tempered strong solution. The proof is based
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on the following quasi-Lipschitz property of the right-hand side of (I) and
{Jy): in view of (U) we have
IR = F@)| < L{|X1]n(@) - %@ + 3 o) = x@]|
jely
where

Ly = Limax{g*(|x(w))) W), g%|x@) F@)]*
J! = {ie I; min{lx(w) — x)|, [x@) - 5@} < B

The cardinality |J;’| of J; can be estimated via (13).

The external field 2 = A, in (J;) is almost arbitrary; we assume that
hy(x) = 0 even if the distance of x from the boundary of V is larger than R.
Consider now the time evolution of

d(w, &, y, p) = Zf:ﬁ(l)ﬁ = X+ |vi = 8 (24)
along two solutions w, and w, of (I) or (J,); here and in what follows the usual
abbreviations x; = x(w), v; = v(w), X; = x(®), 5, = v:(®) are used; f;, f;’ and
/i, i/ denote the value and the derivative of fat p — |x; — y| and at p —
|X; — y|, respectively; D,(p) is the disk of center y and radius p > 0.

Let w; = gy(t, w, ¢), ®;, = ¢3(t, w, ¢); then x;, X;, and v; — b, are differ-
entiable functions of time; thus

(d]dt)d(ew,, @, ¥, p)
< Z(ﬁllevzl + LR oD% — &2 + o — 5%

iel

+ 2 Zﬂf—llvl = G|llx = X + Aoy — 5] + |Fiw) — F(@)]] (25)

iel
provided that D,(p + 4R) = V' n V. Observe that f” is a bounded function;
further, 2|v; — 5] |x; — X;] < |x; — %2 + |v; — 5,)%; thus 4’ can be esti-
mated by d(w;, w;, ¥, p + 4R) as follows. Substituting (23) into (25) and
estimating |v;}, |5,], and |J;| via (12) and (13), we obtain that there exists a
constant L, depending only on U such that

(d/dt)d(wh ata Vs P) < QMld(wt> ata Y. p + 4R) (26)

where the sequence M, = M,(y, p) is defined by the recursive formulas
MO(ys P) = la Ml(y! P) = 82‘“1(]}’[ + P)> and

Mn(y7 P) = (l/n)Mn‘l(yy P)Ml(y’ p+ 4Rn — 4R)
if n > 1; further

Q = O(t, o, @o) = sup Ly[max{l, W(ws), W(@)* 2 @7
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Therefore
sup d(ws, @, ¥, p)
s<t
¢
< dlwo, @0, ¥, p) + Ot wo, B)My(y, p) f (w5, @y, y, p + 4R) ds (28)
0

holds for each # > 0 with probability one, provided that D,(p + 4R) <
V' N V. Let us remark that (28) remains in force even if w, and w, are tem-
pered strong solutions of (I); in this case no restriction is needed on y and p.
Iterating (28) as many times as possible, the basic tool of this section is
obtained.

Lemma 4. Let w; and o, denote either tempered strong solutions of (1),
or w, = gylt, w, ¢), ®, = gy(t, w, €) with D,(p + 4Rn) < V' " V. Then there
exists a constant Lz depending only on U such that

sup d(ws, @;, , p)

< L3Mn(y, P)Qn+2(t’ Wg, aO)n‘ltl‘"
1

+ > [tOt, 0o, B) My, p)d(wo, @0, ¥, p + 4kR)
k=

0

holds with probability one for each # > 0 and yeR? p > 0 satisfying
p < 4Rnand p + 4Rn = g(|y)).

Proof. Iterating (28) n — 1 times, we obtain that
sup d(ws, @, ¥, p) < t"Q"M, sup d(w,, @, y, p + 4Rn)
s<t s=<t

n—1
+ > t°QMd(wo, Bo, y, p + 4kR)  (29)
k=0

On the other hand, using |x; — %] < 4(p + 3R) and
lo: — :? < 2(|vif* + |8.[%)
in (24), it follows by Lemma 1 that
d(w, B, 7, p) < Lap* max{W(w), @)} (30)

whenever p = g(|y|); L, is a universal constant. A comparison of (27), (29),
and (30) results in the statement of the lemma.

We can consider d(w,, @;, ¥, p) as a reasonable measure for the deviation
of solutions from each other only if we a priori know that the particles are
localizable, i.e., x;(w,) remains in a controllable neighborhood of x,(wy).

Proposition 2. Let w, denote either a tempered strong solution of (I)
or w, = @y(f, w, ¢), and suppose that W(w,) < w, w = 1. Then for each



Stochastic Dynamics of Two-Dimensional Infinite-Particle Systems 363

t > 0, yeR? there exists a positive € = «(t, y, w) such that p > 4r > 0
implies that

P| sup suplu(o) — 11 > | < expll — et

ieJ(y,r) s<t

where J(y, r) = {iel; |x(wo) — y| < r}, and ¢ = q,(¢) is the same as in
Proposition 1.

Proof. Let S denote the minimal radius such that x(w,) e D,(S) if
s < t,ieJ(y,r). Since |x(w;)| < |y| + Sand

t
) = 3] < o xw) = o) < 7 [ oo
0
in this case, in view of (12) we have

S<r+ag(y + Szt) €1))

where z(7) has been defined in (16). Using the subadditive property of g and
g(S) < 1 + VS, it follows that

S<r+all + gy + VSl()
Thus

V'S < Vr + Liz(r)
provided that r < S; L; is a new constant depending on y. Hence

S < 2r + 2Ls%22(1) < 4p + 2(tLs)? sup W(wy) (32)
st

follows directly, and (32) holds even if S < r. Observe now that ¢ =
e(t, y, w) > 0 can be chosen to be so small that

2(tLs)* explgu()g)] = 2(tLs)%e(1 + u)? < 3p

holds for u = p"? — 1; g = g,(¢). This means that P(S > p) < e!"* in
view of Proposition 1, which proves Proposition 2.

Now we prove the existence of limiting solutions. Remember that the
weak topology of £, is defined in the following way. For each finite J < 7
set

h!
o = 3l = {3 15@) = 5@ + o) - s@IP* G
ie
Then lim w, = » means that lim|w — w,|; = 0 for each finite J < I. Due to
Proposition 2, |w; — @,;.,, can be estimated by [d(w;, @;, ¥, p)*2 with a
probability close to one if p is large enough.

Letwe L2, V, = Do(8Rn + R), and w;* = ¢y (¢, », €); we may assume

that the external field 2 = A, in (J;,) has been chosen in such a way that
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sup W(wo™) < w < +o0 and w > 1. We want to apply Lemma 4 and Propo-
sition 2 to w, = w!*™ and w, = wWI*™*1 where m el is fixed, r = Rm, and
y = 0. Proposition 1 implies

P{Q > Ly expl(d + 1/2)q.(1)g()]} < 2e7*

for Q = Q(t, wy, @,), and the simultaneous bound of Proposition 2 for w,
and w; is 2 exp(l — €p*9), with g = ¢,(¢) and € = «(¢, 0, w). Put p = 4Rn in
Proposition 2 and in Lemma 4, and u = 2g(n) in Proposition 1; since
d(wh™™, wl*™*1 0, p + 4kR) = 0 in Lemma 4 as k < #, we obtain that

s<t

< 2exp[—2g(m)] + 2 exp[l — «(4Rn)Y9] (34)
where J(r) = {ie I, |x(w)| < r}and
Sa(t, w) = {LsL37?n*t"M,(0, 4Rn) exp[q(n + 2)(d + 1/2)g2g(m)]}*"*

P{sup|w§'+’" — ottmrl L > §,(, w)}

It is easy to check that 3 §,(¢, w) < 40 and the sum over n of terms on the
right-hand side of (34) is finite, too; therefore the Borel-Cantelli lemma
implies

P[Sslilt) 72:1 log" — @iy < +°O} =1 (35)
for each ¢ > 0, r = Rm if m e I, which proves that there exists the limit
9(t, @, €) = lim @y (1, w, ¢) with probability one for each w € L,.

We have to verify that ¢(¢, w, ¢) is a tempered strong solution. Since W
is a lower semicontinuous function of w e ,, we have W(g(t, w, ¢)) <
lim inf W(gy,(t, @, ¢)) as.; further, W > 0; thus the Fatou-Lebesgue
theorem and Proposition 1 imply that

f sup W(e(s, o, ¢)) P(de) < lim inf f sup Wipy, (5, 0, ) P(do) < pult) (36)

if W(w) < w, where p,(t) is a continuous function of ¢ > 0 for each w < +o0.
Hence

P[S‘ﬂt) W(g(s, w, €)) < +oo] =1 37

Thus the interparticle distances in w; = ¢(#, w, ¢) are positive with probability
one; consequently w,; satisfies (I'). The measurability properties of ¢ are
direct consequences of those of ¢y_; as a solution of (I'), ¢ is automatically a
Markov process, while temperedness of ¢ is just (37). Uniqueness of tem-
pered strong solutions and their continuous dependence on initial data are
a direct consequence of the following result.
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Proposition 3. Suppose that w, and w, are tempered strong solutions
of (I) with max{W(w,), W(@,)} < w, w > 1. Then for each sequence u, > 1,
t>0,yeR? p = 4r > 0 we have

P[Sup]ws - asll(y,r) > D(ta wWo, “—)07 Vs Py W, uk)il

s<t
< 2exp(l — o) + 2 > exp(—uy)
k=0

where J(y, r) = {i € I; min{|x{(wo) — y|, X&) — ¥} < r}, ¢ = qu(?) and
€ = «(t, y, w) are the same as in Propositions 1 and 2, and

Dz(tz @o, "_")O: Y, ps W, uk)
[eo]

= Z (Lat)* explgk(d + 1/2)g(u)IM (¥, p)d(wo, By, ¥, p + 4kR)

Further, D is finite, e.g., if 7, increases as fast as a power of g(k), and in such
cases lim wy" = o implies lim, D(t, wq, wy™, ¥, p, W, u,) = 0, provided that
W(won) < w.

Proof. Let n go to infinity in Lemma 4; then the statement follows from
Propositions 1 and 2 in the same way as (34) has been obtained.

As a direct consequence of Proposition 2, we obtain that lim wy® = w,
implies

lim P(suplws” — ©rym > D) =0 (38)
n s<t

foreacht > 0, D > 0, ye R? and r > 0, which is a stronger statement than
that of Theorem 1 about continuous dependence on initial data.

6. PROOF OF THEOREM 2

First we show that the canonical Gibbs distributions at temperature
T = o?/2X are invariant under the Markov time evolution defined by (J).
Let wy and wy° denote the configuration inside ¥ and that outside V, re-
spectively, 1.e., w = (wy, wy©). We may assume that the particles inside V are
numbered by 1, 2,..., n; the configuration wy¢ of frozen particles and the
number # = |J,(w)| of moving particles are fixed. Then fi{wy|w,) =
Z-Yexp[—(1/T)Hy(w)] is the density of the canonical Gibbs distribution in
V with respect to the 4n-dimensional Lebesgue measure; 7 > 0 is the tem-
perature; the total energy Hy = H,(w) is explicitly defined before (6).

For notational convenience set x; = (¢qi_1, §o;) and v, = (Poi1, Pas) if
i=1,2,.,n, and let P, = 0/dp; and Q; = 9/0q; denote the operators of
differentiating functions of wy, with respect to p; and g;, respectively. Then the
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generator G of the Markov process gy defined by (Jy) can be written as
2n
G = > [36°P2 — p,P; — (QH,)P; + piQ] (39)
i=1

and the formal adjoint G* of the differential operator G is acting as
2n
G = > (10°P3f + XP(p.f) + Pl(Q:H)f] — Qpif)}
i=1
2n
= Z [30°P + A+ WwPif + (QHY)P.S) — piQ.f] (40)
i=1

Since P,fy = ~T'p,fy, P2fy = =Ty + T~?pfy, and
Q.fy = —T Y QHvfy,
we have

0.2

2 2n
LI -7 — T YA - — 2
6 = a(d = 5o =T (A= 57) A 2

so that f, satisfies the stationary Kolmogorov-Fokker-Planck equation
G*f = 0 if and only if T = ¢?%/2A.

Suppose now that p is a canonical Gibbs state for U at temperature
T = o?/2X; p is a probability measure on (24, %,) such that, given w,® and
the number # of particles in ¥, the conditional density of w is just f(wy|wy©)
with 2 = 0 in the definition of f,. Let V,, = Dy(4Rn) and choose the corre-
sponding external field 4, = A,(x) in such a way that lim f h(w) dp = 0,
where :

ho(@) = S h(xi(w))

iel
Since A, = 0, this implies that Z, = fexp[—T‘lhn(w)] dp goes to one; thus
lim f 17,2 expl =T~ hy(w)] — 1| du = 0

follows again by the dominated convergence theorem; i.e., the probability
measures u, defined by du, = Z,~* exp[— T~ *h,(w)] dr converge to p in the
variation distance. On the other hand, the conditional density of u, with
respect to the Lebesgue measure, given wy, © and the number of particles in
V., is just fy (wy, oy ©) with & = h,; therefore p, is invariant under the follow-
ing partial dynamics: particles inside V, are moving according to (Jy ), while
the position and the velocity of external particles remain the same as at time
zero. Let P,* denote the Markov semigroup of the above partial dynamics;
we have shown that u, = p, P ie., g, = P — uP," + puP,". We know
that u, converges to u in the variation distance; thus lim(u,P* — uP,®) = 0,
again in the variation distance. Further, as ¢(?, w, ¢) = lim ¢y (7, , ¢) a.s.
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for each w € Q,, it follows that lim uP,* = uP, holds in the sense of weak
convergence of probability measures, i.e., 4 is invariant under P;.

To prove the “only if” part of Theorem 2, consider the time evolution
of Hy(w) along the general solution w, = ¢(z, w, ¢) of (I), where

Hi) = 5 flx(@)Hw)

iel
Hw) = §lo@)|* + § D Uln(w) — x(@))
j#i
and f = f(x), x€R?, is a continuously differentiable function of compact
support. Let H, () denote the time derivative of H/(w) at w = @, along the
solution @, of (I) in the classical case of A = ¢ = 0; we have

H/(w) = Y (grad f(x,), v) Hi(w)

iel

+ % Z Z L) — fx)l(grad U(x; — xj), v; + vy)

iel j#1

with the usual notation x; = x(w), v; = v{w); therefore

Hyw) = Hywo) + [ H/@)ds + 3o | o d

iel

+ 3 [ fe)e? = Ao ds (1)

iel

follows by the Ito lemma. Suppose now that u is a canonical Gibbs state for
U and temperature 7 > 0, and p is time-invariant, i.e., g, = uP, = p for
each ¢t > 0. Then the coordinates of v; are Gaussian random variables of zero
mean and variance T; further, each o; is independent of the positions of
particles; thus [ /(x,())|vi(w)|? p(dw) = 2T [ f(x(w)) pdw), and | Hy'() p(dlv)
= 0. On the other hand, the expectation of the stochastic integrals in (41)
with respect to P is zero, since the expectation of

JO . Ifz(xi(ws))lvi(ws)lz ds

is finite in view of Proposition 1; thus, taking the expectation of both sides
of (41) with respect to the product measure & x P, it follows by p; = u and
the Fubini theorem that

(" = 207) | 3 () ) = 0

iel

for each f, which proves the last statement of Theorem 2.
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7. PROOF OF THEOREM 3

Letw, = ¢ .(t, w, ), ®; = ¢(t, w), A > 0,¢ > 0,and ¢ = max{A, o} < L.
We have to repeat the proof of Proposition 3 in the modified situation when

wo = @y and v; = ¥; has a proper stochastic differential, namely
A, — ) = —[Fiw) — F(@)) dt — dv; dt + o dw,

Set dy(t, p) = d(w;, @;, 0, p + 4Rn) with p > 4r > 1 fixed; then, following
the lines of the proof of (26), we obtain by the Ito lemma that

t
4ty ) < QMLO, p + 4R) [ dys(s, p)ds + Z,(0)
o
where Q is the same as in (27) and

0~ | 'S SAI20* — Do, — B )] ds + 20 | S A — 5y dw (@)

0 iel iel

The exponential supermartingale inequality (see the proof of Lemma 2)
implies that the probability of

stgg[chzjf,.ﬁ(ui — ) dw; — 40'ft S AT — o ds] <olp+n)? (43)

iel 0 iel

exceeds 1 — exp[—2(p + n)?], where

Z exp[—2(p + n?] < e-*
n=0
as p > 1. On the other hand, the deterministic integrals in (42) and in (43)

can be estimated by a constant multiple of «zQ%(p + #)?; thus, combining
(43) and the above inequality, we obtain that for ¢ < ¢,

t
sup do(5, ) < QM0, p + 4Rn) [ sl p) ds + eLoQ(p + ) (44)
s< 0

holds simultaneously for each »n with a probability larger than 1 — e~2; L,
depends only on U and ¢,. Iterating (44), we obtain that

P[sup dw,, 3,0, ) > SO\ o>] <er 4s)
s<t

where the random variable S(A, o) is given by

SOy o) = L, i (M0, p)(p + 120"+



Stochastic Dynamics of Two-Dimensional Infinite-Particle Systems 369

Further, choosing u = 2g(n + m) in Proposition 1, it follows that

S, 0) < ZO Lot "M(0, p)(p + n)* explg(n + 2)(d + 1/2)g(2g(n + m))]

holds with a probability larger than

1-2 > exp[-2¢(n+ m)] = 1 — 2/m
n=0

where ¢ = ¢,(z) does not depend on A < 1 and ¢ < 1. Therefore the tail of

the distribution of S(A, o) is uniformly bounded, i.e., S(A, o) converges to
zero in probability if e = max{A, ¢} goes to zero, so that the comparison of
(45) and of Proposition 2 results in the statement of Theorem 3.
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