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Infinite-Particle 

The time evolution of an open system of infinitely many two-dimensional 
classical particles is investigated. Particles are interacting by a singular pair 
potential U, and each particle is connected to a heat bath of temperature T. 
The heat baths are represented by independent white noise forces and 
Langevin damping terms. Existence of strong solutions to the corresponding 
infinite system of stochastic differential equations is proved for initial 
configurations with a logarithmic order of energy fluctuations. Gibbs states 
for U at temperature T are invariant under time evolution. 

KEY WORDS:  Infinite systems; nonequilibrium dynamics; stochastic 
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1. I N T R O D U C T I O N  

The aim of  this pape r  is to ini t iate the s tudy o f  cer ta in  r a n d o m  per tu rba t ions  
o f  two-d imens iona l  nonequi l ib r ium dynamics .  The me thods  o f  Refs. 3 and  
4 are  deve loped  fur ther  in o rde r  to ob ta in  the existence of  s t rong  solut ions 
to the fol lowing infinite system of  s tochast ic  differential  equat ions.  Cons ider  
an infinite conf igura t ion  ~o = {(x~, v0; i ~ I }  of  two-d imens iona l  labeled 
par t ic les  in teract ing by  a pa i r  po ten t ia l  U = U(x);  x~ = x~(co) and  v~ = v~(o)) 
denote  the pos i t ion  and the veloci ty of  the i th par t ic le ;  I is the set o f  posi t ive 
integers.  Part icles  are  assumed to be o f  uni t  mass,  and  in add i t ion  to  the 
conservat ive in terpar t ic le  forces - g r a d  U(x~ - xj) ,  j ~ i, the nonconserva-  
tive force -Av~ and  a white noise force are  act ing on the i th part icle .  Then 
the s tochast ic  differential  equat ions  o f  m o t i o n  are  

dvi = - ~ g rad  U(xi  - x j )  dt - Av~ dt + ~ dwi 
J*, (I) 

dxi = v~ dt, i e I 
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where w~ = w~(t) is a sequence of  independent ,  s tandard,  two-dimensional  
Wiener  processes,  and A and ~ are nonnegat ive constants.  We shall show that  
(I) generates a M a r k o v  t ime evolution in the space ~o  of  infinite configura- 
tions with a logar i thmic order  of  energy fluctuation. This stochastic dynamics 
can be interpreted as the t ime evolution of  a large classical system connected 
to a heat  ba th  of  t empera tu re  e2/2A. Indeed,  a canonical  Gibbs  state for  U 
at  t empera tu re  T is t ime-invariant  if and only if T = ~2/2A. I f  A and ~ go to 
zero, then the stochastic dynamics  converges to the classical dynamics,  
which was constructed in Ref. 4. 

2. P R E L I M I N A R I E S  

First  we have to clarify the meaning  of  (I). Let  R 2 denote the two- 
dimensional  Euclidean space with the usual no rm [-[ and scalar p roduc t  
( . , . ) ;  Z 2 is the integer lattice in RL The interaction potential  U is assumed 
to be a cont inuously differentiable function U =  U(x), x e R 2, x r 0, such 
tha t  U(x) = U ( - x ) ,  limx~o U(x) = +c~ and U(x) = 0 if Ix] >/ R; R < +oo 
is the range of  U. To  prove existence of  solutions we need the following 
regulari ty condit ions for  U; they are the same as in Ref. 4. There exist 
positive constants  a, b, e, d, 3, L such that :  (a) U(x) > 0 if Ix] ~< 3, 

Ixl ]grad U(x)[ <~ a + bU(x) (E) 
(b) at  least one of  

Igrad U(x)[ 2 ~< cU(x) if  tx[ /> ~ (P) 
and 

(R) cU(x) >1 Ix] -4 if Ix] ~< 3 

holds, and (c) I U(x)] <. u and 1U(y)] ~< u imply that  

[grad U(x) - grad U(y)l <~ ]x - ylL(1 + u) a (U) 

The  validity of  (E), (U), and one of  (P) and (R) will be assumed th roughout  
this paper .  For  a discussion of  these conditions see Refs. 3 and 4. 

The  configurat ion space $2 is defined as the set o f  locally finite labeled 
configurat ions oJ = {(x~, v~); i a I}, where x~ = x~(oJ) and v~ = v~(w) are two- 
dimensional  vectors,  and the sequence x~(~o) of  positions has no limit points. 
Let  $2 be equipped with the weak topology,  i.e., lira oJn = ~o means that  
l im x~(,~,) = x~(w) and lim v~(,~,) = v~(oJ) for  each i a L This topology is a 
separable  and metric  one;  the corresponding a-algebra of  Borel subsets o f  

will be denoted by ~ .  
The particle number  and the total  energy of  a configuration w in a 

y-centered disk of  radius p are denoted by 

N(w, y, p) = ~ fu,~(x,) (1) 
t e l  
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and 

H(o~, y, p) = ~ f~#(x,)  [vii 2 + ~ f~ ,o (x , )U(x~  - x , )  (2) 
�9 j r  

respectively, wheref~ , . (x)  = 1 if ]x - Yl < P, andf~,~(x) = 0 otherwise. The 
quant i ty  

H(,,,) = sup[g(] y]) ] -  ZH(to, y, g(] Yl)) (3) 
y~Z2 

is called the logar i thmic energy fluctuation of  to; here g(u)  = l + l o g o  + u), 
where log denotes the natural  logari thm. Let  us r emark  tha t  _His a lower semi- 
cont inuous funct ion of  to. 

The M a r k o v  t ime evolut ion will be constructed in the subset 

fro = {to; H(to) < +oo} (4) 

of  g~; do  = ~ n ~o  denotes the e-a lgebra  of  Borel subsets o f  ~o .  Since 
either o f  (P) and (R) implies superstabil i ty of  U, S2oq = {to; H(to) ~< q} is a 
compac t  subset  of  ~2o for  each q < +oo. 

Suppose now tha t  we are given a sequence of  independent ,  R2-valued 
s tandard  Wiener  processes w~ = w~(t), t > O, i e I ,  on a complete  probabi l i ty  
space (C, ~r P) ;  the componen t s  of  each w~ are uncorrelated,  w~(0) = 0. We 
m a y  and do assume tha t  the realizations of  each w~ are cont inuous with 
probabi l i ty  one, e.g., C can be chosen as an infinite p roduc t  o f  C[0, oo) 
spaces, dtt denotes the e-a lgebra  generated by the family we(s),  s <~ t, i ~ I, 
of  r a n d o m  variables.  

N o w  we are in a posit ion to define what  is a solution of  (I). Let  us r emark  
tha t  particles along a cont inuous trajectory to t in ~2 preserve their initial 
enumerat ion .  

D e f i n i t i o n .  Consider  a stochastic process tot, t > 0 on (C, d ,  P )  with 
state space (S'2o, do),  i.e., tot = tot(c) is a measurable  mapp ing  of  (C, ~r P) 
into (~o ,  ~'0) for  each t >/ 0. We say that  tot is a s t rong solution of  (I) with 
initial configurat ion to if too = to, tot is ~ - m e a s u r a b l e  for  each t >/ 0; further,  
a lmos t  each t rajectory of  tot is cont inuous and 

Jt  xe(to,) = ~,(toO 

re' v,(tot) = v~(too) - ~ grad U(x~(tos) - x j ( % ) )  ds 
j r  

Jo' - a ve(tos) ds  + crwe(t) ( I ' )  

hold for  each t > O, i e I a long a lmos t  each t ra jectory tot(c) of  tot. A solution 
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tot is a t empered  solution if H(o.,t(e)) is bounded  in finite intervals of  t ime with 
probabi l i ty  one. 

To  avoid the possibility of  misunderstanding,  we have to clarify notat ion.  
oJ t is the value of  the stochastic process tot at t ime t; ~ot(c) is the t rajectory of  
tot cor responding to the r a n d o m  element  c E C. However ,  we do not  indicate 
dependence of  r a n d o m  variables on c in general;  relations for  co t as a function 
of  t ime should be considered for  a lmost  each trajectory. 

3. M A I N  RESULT 

Solutions will be constructed as a.s. weak limits o f  solutions to finite 
subsystems.  Theo rem 1 contains the basic results of  Ref. 4 in the part icular  
case of  ,~ = a = 0. O f  course,  the one-dimensional  existence theorems of  
Ref. 3 also have similar, stochastic extensions. 

T h e o r e m  1. Fo r  each oJ ~ gZ o there exists a tempered  strong solution 
to t = ~o(t, oJ, c) o f  (I) such that  o~o = o~ a.s., and this solution is unique in the 
sense tha t  P(oJt(c ) = ~t(c) for  t /> 0) = 1 whenever  ~t is a t empered  s t rong 
solution with ~o = o~ a.s. The ~0 is joint ly measurable  in t, ~o, c, and it is a 
M a r k o v  process for  each oJ e g~0. Moreover ,  the restriction of  ~(t, oJ, e) to 
any  of  the subsets s is a stochastically cont inuous funct ion of  oJ E gZ0~; this 
continuity is uni form in finite intervals o f  time. 

In  cont ras t  to the determinist ic case of  a = 0, here (U) also is needed 
in the p r o o f  o f  existence. Wi thout  (U) only weak solutions can be con- 
structed, i.e., o~t is not  necessarily ~ - m e a s u r a b l e .  This measurabi l i ty  proper ty  
is always needed when stochastic integrals are considered. 

In  view of  Theorem 1, Pt = Pt( c~ A) = P(cp(t, oJ, c) ~ A), A e d0 ,  is a 
semigroup of  t ransi t ion probabil i t ies in (~0 ,  d0), i.e., the translate ~t = t~Pt 
of  a probabi l i ty  measure  ~ on (~0,  d0)  is given by re(A) = f t~(d~o) Pt(co, A). 
Let  us r emark  that  ~0 carries a wide class of  probabi l i ty  measures  defined 
originally on ( ~ ,  ~ ) .  F o r  example,  i f f  exp[pH(o~, y, p)] ~(doJ) ~< exp(qp 2) for  
p >/g([y])  holds with some positive constants  p and q, then the Borel -  
Cantelli  l e m m a  implies directly that/~(~0) = 1. This condit ion can be verified 
easily for  such Gibbs ian  fields where the singularity of  the interaction poten-  
tial is not  weaker  than  tha t  of  U; see Proposi t ion 1 in Ref. 4. 

The  first p rob lem arising here is certainly the description of  t ime- 
invariant  probabi l i ty  measures.  A probabi l i ty  measure  tz on (~ ,  ~ )  is a 
canonical  Gibbs  state for  U at t empera ture  T > 0 if the particles are distri- 
buted  in R 2 according to a canonical  Gibbsian  point  field with potent ial  
(1/T)U (i.e., the field is specified by the condit ional  distributions of  points 
in finite volumes V given the number  of  points  in V and the configurat ion 
of  points outside V; see Refs. 8 and  9), while velocities are completely inde- 
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pendent  of  positions, and the velocity coordinates are identically distributed, 
independent  Gaussian variables of  zero means and variances T. Of  course, 
tz(~0) = 1 in this case, too. 

On the coincidence o f  canonical  and grand canonical  Gibbs states see 
Ref. 6. 

Theorem 2. Let 0- > 0 in (I); then a canonical  Gibbs state ~ for  U at 
temperature  T > 0 is time-invariant, i.e., t* = /*Pt if and only if h > 0 and 
T = 0-2/2),.  

To indicate the dependence of  the solutions on ~ and or, let %,,(t ,  ~o, e) 
denote the general solution of  (I). The particular case h = ~ = 0 is o f  special 
interest; the classical solution ~o(t, co) = q%.0(t, co, e) has been constructed in 
Ref. 4. 

Theorem 3. I f  h and ~ go to zero, then ~0a.o(t, oJ, c) converges in 
probabil i ty to 9(t, ~o). 

It  seems that  the ergodic properties of  the stochastic dynamics are nicer 
than those of  the classical dynamics;  such problems are to be discussed in a 
for thcoming paper.  

4. A PRIORI PROBABILITY B O U N D  

In this section Proposi t ion 2 of  Ref. 4 will be extended to our  stochastic 
situation; we prove a uniform bound  for the distribution o f  H along solutions 
to finite subsystems of  (I). Nota t ion  and methods follow those in Section 4 
o f  Ref. 4. 

Let us consider the mot ion  of  a finite number  o f  particles within a 
potential barrier h; the external particles are frozen, V c R 2 is a bounded,  
open set of  smooth  boundary ;  h = h(x )  is a nonnegative and twice con- 
t inuously differentiable function if x ~ V; h (x )  = 0 if x ~ V; further, lira h(x)  

= + ~  when x c V tends to the boundary  o f  V. Let ~o ~ S20, J = Jv(c~) = 

{i c I ;  x~(co)~ V} and define the random trajectory tot = q~v(t, oJ, c), t >/ 0, 
by x~(oJt) = x~(oJ), v~(~) = 0 if i r Jv(oa), while 

dv~(~ot) = - F,(~o 0 dt  - grad h(x~(oJt) ) dt  - hv~(o~t) dt  + 0- dw, ( t )  (Jr) 

if i ~ Jv(~o) with initial condit ion x,(w0) = xi(w), v~(co0) = v,(co) for i c Jv(oJ); 
here 

F~(c~) = ~.  grad U(x~(G) - x j ( ~ ) )  (5) 

i.e., the field of  external particles is present, too. It is not  quite trivial that  
(Jv) has a unique m-measurab le  (i.e., strong) solution; only local existence 
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and uniqueness follow f rom the finiteness of  the total  energy Hv(to) by 
s tandard  methods.  Fo r  completeness  we reproduce the a rgument  of  Exercise 
5 in Section 4.5 of  Ref. 7. Let  r -- r(c) denote  the r a n d o m  lifetime of  the 
solution, t /x  ~- = min(t,  ~-), and observe tha t  the stochastic differential of  

] Hv(r = ~ ]v~I 2 + 2h(x~) + ~ U(x~ - xs) + ~ ,  U(x~ - x,) 

along a solution of  (Jr) is just  

dHv = - Z  ~ ,  [v~] z dt + azlJ] dt + cr ~ v ,  dw~ (6) 
i~.  r t e l  

where I J[  denotes the cardinali ty o f ]  = Jv(OJ). Thus f rom the I to  l emma  [see 
(6)] we obtain  tha t  

( tA~ Ov(o  ̂ O < Ov(o 0) + o=lslt + v, (7) 
i ~ J  wO 

for  each t < +oo with probabi l i ty  one. However ,  a lmost  each t rajectory of  a 
stochastic integral  has the following proper ty :  it is either bounded  or oscil- 
lates between - o o  and +oe in a finite interval of  t ime;  thus the lower bounded-  
ness of  Hv results in l imt~, Hv(cOe^0 < +oe.  Therefore  the local existence 
theo rem implies that  P ( r  < +oe)  = 0, i.e., (Jr) has a unique global solution, 
and 9v(t, ~o, e) is an ~ t -measurab le  M a r k o v  process. 

The  first step of  the p r o o f  of  Theorem 1 is to extend the stochastic version 
(6) o f  the law of  energy conservat ion to infinite systems. Fo r  this we intro- 
duce a nonnegat ive and additive modificat ion W of  the total  energy. Let  
f = f ( u )  denote  such a twice cont inuously differentiable nondecreasing 
funct ion that :  

( i ) f (u)  = 0 i f u  ~< - 3 R ; f ( u )  = l i f u  i> O ; f ( - 5 R / 2 )  = 1 / 9 ; f ( - R / 2 )  = 
8/9. 

(ii) f is convex for  u <~ - R / 2  and it is concave if u >/ - 5 R / 2 ,  i.e., f is 
l inear  i f - 5 R / 2  <~ u <~ - R / 2 .  

(iii) There  exists a constant  dl such that  {f'(u)[ 2 ~< rill(u) 

I f  oa ~ ~ ,  y ~ R 2, p > 0, then W is defined as 

W(o~, y, p) = ~ f ( p  - [x, - yl)W~(r (8) 
~ I  

where 

W,(oJ) = 1 + Iv, l 2 + 2h(x,) + ~ 8Rf (3R  -- 3Ix, - xj{) + ~ U(x, - x~) 
j r  y r  

and 3R = a/b if (R) holds, 8R = 0 otherwise. Let us remark  that  W~(oJ) >/ 1 
in view of  (E) and W is a nondecreasing function of  p. The logari thmic 
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f luctuat ion of  IV is defined as 

W(@ = suPlg([y[)]-2W(co, y, g(lYt)) (9) 
y ~ Z  2 

Some basic propert ies  of  W are summar ized  in the following l emma:  

kemma 1. There  exist constants  a l ,  b l ,  cl depending only on U such 
tha t  

W(oJ, x, p) <~ a~p2W(oJ) (10) 

whenever  x e R 2, O >1 g([x]), and further,  

lv,(c~ ~< a~g(lYl + P)I W(c~ (12) 

if ]x~(oJ) - y] ~< O + 5R, and 

U(oJ, x,(oJ), 2R) ~< 1 + alg(]Y[ + O)] W(~ 1/z (13) 

i f  Ix,(o~) - yl  < p + 5R. 

Proof. Let Dy denote the disk of  center  y E Z 2 and radius g(lY[); first 
we show tha t  there exists such a subset  Zo 2 of  Z ~ tha t  only a fixed number  of  
disks Du, y ~ Z0 2, can have a nonempty  intersection, and the union of  all 
disks Dy, y ~ Zo 2, covers R 2. Fo r  this set rz = 1, and r~+~ = r~ + g(r~) for  
k ~ I ;  let nk denote the smallest  integer larger than 8rk/g(rk). For  each k ~ I 
we choose nk points  f rom the origin-centered circle of  radius rk in such a way 
tha t  they fo rm a regular  polygon;  Ro 2 consists o f  the above described points,  
and  Zo 2 is the set o f  such y ~  Z 2 tha t  Ix - Yt ~< 2 for  some x ~ R o  2. Since 
l im[g(r~+l) - g(rk)] = 0, it follows easily tha t  Zo 2 has the p roper ty  we need;  
thus 

W(oa, x, p) <~ ~ W(oJ, y,g([y])) <<. ~ W(oJ)g2([yi) 

~< W(o))[g(lx[ + p + 3R + 2) + p + 3R + 212n0 (14) 

where bo th  sums are over  s u c h y  ~ Z02 that  Ix - Yl ~< P + 3R + 2; no is the 
maximal  multiplicity of  the covering {Dy; y ~ Z02} of  R 2. Since p /> g([x[) in 
(14), the subaddit ivi ty of  g implies (10) directly. 

Condi t ion (1 l) follows f rom the superstabil i ty of  U in a similar way as 
(10) has been deduced;  see Ref. 8 and the p roo f  of  Proposi t ion 4 in Ref. 
4; (12) and (13) are obviously true. 

N o w  we turn  to the p rob lem of  t ime evolution. Let tot denote either a 
t empered  s t rong solution of  (I) or  tot = Cpv(t, oJ, e) for  (Jr);  h = 0 in the 
definition of  W in the first case. We define W'(N, y, p) as the t ime derivative 
of  W at N along the classical solution tot ~ i.e., 

W'(cot ~ y, p) = (d/dt) W(oJt ~ y, p), 
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where tot ~ is the solution o f  (I) or (Jv) with Z = a = 0, respectively. The 
explicit expression of  W'  is given by the corresponding Poisson bracket. In  
view of  the basic estimate (6) of  Ref. 4, there exists a constant  K0 depending 
only on U such that  

w'(~,y ,  p) <~ K0g(lyl + P)[~(~)]~'~ ~ W(~,y, p) + XoW(~,y, p) (15) 

holds for  each ~ = o~t, y c R 2, and p > 0; since dx~ = v~ dt even if x~ r V, 
the presence of  the external field and of  frozen particles does not  involve any 
change in the p roo f  of  (15) in compar ison with that  o f  (6) in Ref. 4. 

For  each k ~ I and y 6 Z 2 we define a stochastic process pk(t), t>>.O, as 
the a.s. unique solution o f  the integral equation 

f0 p~(t) = kg(]y])  - Ko g( ly l  + [p~(s)])z '(s)ds (16) 

where 

z(t) = Jo [W(~~ d~ 

It  is easy to check that  pk(t) is ~ - m e a s u r a b l e ;  the trajectories o f  pk are 
differentiable and decreasing, pk+z(t) - pk(t) <~ g(lY]) a.s. for each t >/ 0; 
further, ~-~ = sup{t >/ 0; p~(t) >1 g(lY])} is a Markov  time with respect to 
such that  ~k < Tk+~ < +0e and lira ~'k = +oo a.s. Put  K = Ko + ~2; in view 
of  the I to lemma the stochastic differential of  e-KtW(oJt,  y, pk(t)) is 

d ( e - K t W )  = e-~:l - K W  + W '  + ~ W Ok' dt 
i L  

- ae-~ '~f ,  lv~l~dt + ~e-K'~f~dt  + ~e ~ f~v~d~( t )  (17) 

where f =' f (pk ( t )  - [y - xi(o)~)l), and J = Jr(co) if oh = r w, c) and 
J = I if tot is a tempered solution of  (I). Since the sums in (17) are finite in 
the sense that  f -- 0 apart  f rom a finite number  o f  particles, a straightfor- 
ward approximat ion procedure shows that  (17) remains in force even in the 
second case. We have to remark that  among  the stochastic variables ok(t), 
x~(t), v~(t) only the v~ have a proper  stochastic differential; thus the twice 
cont inuous differentiability o f  Wis needed only in v~. Therefore (17) certainly 
holds whenever t ~< ~-~. 

I . e m m a  2. For  each k ~ / ,  y e Z 2, and u > 0 we have 

sup e- tr tW(oJ,^~,  y, pk(t A "rk)) <~ W(~oo, y,  g([y l )k)  + u 
~ >>-0 

with a probabili ty larger than 1 - e-2~. 
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Proof. Using (15), (16), Z /> 0, and 1 + f]vtl 2 ~ W~(~o 0 [see (8)1, we 
find tha t  (17) becomes 

{ e x p [ -  K(t A rk)]} W(~ot ̂ ~k, Y, pk(t A r~)) 

<. w(,oo, y, g(lyl)k)  + pt( ) 2 as 
i e J  . - -  . r  0 

where p~ = ee-~:~v~. Thus the exponential  supermart ingale  inequality [see (6) 
in Section 2.3 and  Exercise 5 in Section 2.9 of  Ref. 7] 

P sup ~ , f ~ d w t -  ~[ f~]  s d s  > u <~ e -s~ 
k t >10 t ~ l  i e .  r 

with fit(s) = pt(s) if  s < ~-k,/~ -- 0 otherwise,  implies the s ta tement  of  the 
lemma.  To  verify the above inequali ty in the case of  J = /, again a s tandard  
approx imat ion  procedure  is needed. 

Observe first tha t  

~ k~ix~ exp[_4kg2(]y])] < 1 

Therefore ,  replacing u by u + 2kg2([y]) in L e m m a  2, and using also (10), we 
obtain  tha t  

supe-KtW(oJt^~k,y, pk(t A r~)) <~ alW(wo)kZg2([y]) + 2kg2([y]) + u (18) 
t > O  

holds s imultaneously for  each k a I and y a Z 2 with a probabi l i ty  larger than  
l - e -~. Define now k -- kt, t /> 0, as the smallest  integer k E I for  which 
pk(t) > g(lY]); then rk > t and  pk(t) <~ 2g(ly]) as p~_,(t) <~ g(lY]); thus, 
choosing k as k = kt in (18), it follows tha t  

e-KtW(oJt) <~ a,W(ooo)kt 2 + 2kt + u (19) 

for  each t /> 0 with probabi l i ty  at least 1 - e-~.  On the other  hand 

/ .  t 

2g(ly]) /> k~g(ly]) - K |  g(lY[ + [p~,(s)l)z'(s) ds 
.Io 

whence 

kt <~ 2 + Kz(t)[1 + g(kt)] ~< 2 + Kz(t)(2 + 2 ~ / ~ )  (20) 

follows by a direct calculat ion;  thus ~/k't ~< 2 + 4Kz(t). Substi tut ing the last 
inequality into the first pa r t  of  (20), we obtain tha t  

kt <<. 2 + Kz(t)(1 + g{[2 + 4Kz(t)]2}) (21) 

Relat ions (19) and  (21) are summar ized  in the following l emma:  

k e m m a  3. Let  u /> 1 and  w /> 1 and suppose that  W(~o0) ~< w, where 
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cot, t >/ 0, is either a t empered  s t rong solution of  (I), or  tot = %(t,  r e) for  
(Jr). Then there exists a constant  M depending only on U such that  

P(sup{M- le -Mtz ' ( t )  -- w[1 + z(t)g(z(t))]} <<. u], >1 1 -- e -~ 
\t~>o / 

the process z(t)  has been defined in (16). 

ProoL I t  is immedia te ;  for  nota t ional  convenience V/w and a /u  have 
been est imated by w and u, respectively. 

N o w  we are in a posit ion to prove  the basic probabi l i ty  est imate for  

P r o p o s i t i o n  1. Fo r  each w /> 1 there exists a cont inuous function 
qw(t), t >1 O, such tha t  

P(L ~ W ( % ) >  exp[q~(t)g(u)] t <<. e -~ 

for  each u /> 1, t /> 0, whenever  W(r ~< w; tot is the same as in L e m m a  3; 
it is defined before (15). 

Proof. Define z~ = z~(t) as the solution of  the differential equat ion 

z' = MeMt[w + wzg(z) + u] (22) 

with initial condit ion z~(0) = 0; then in view of  L e m m a  3 we have 

It  is easy to check that  z~(t) < +oo for  each t /> 0. Therefore  it is enough to 
show that  z ,( t )  <<. r~(t) for  t /> 0, where r~(t) = exp[zll(t)g(u)] - u, and Zu 
is the solution of  (22) for  u = 1 with initial condit ion zlz(0) = 1. Observe 
tha t  z~lg(u) = log(u + r ,)  in the t ime derivative 

r, '(t) = MeM'[w + wz l lg ( zn)  + 1](r, + u)g(u) 

of  r~ ; further,  u, w, g(u), g (zn)  are not  less than  1 ; consequently,  

r, '(t) > MeMt[w + rug(r~) + u] >~ z~'(t) 

whenever  z~(t) <<. r~(t). Since z~(0) < r~(0), this is possible only if z~ ~< r~ for  
each t /> 0, which proves the s ta tement  of  Proposi t ion 1. 

The  essential content  of  Proposi t ion 1 is the weak compactness  of  the 
set  of  probabi l i ty  measures  for  solutions tot o f ( I )  or  (Jr)  such that  W(co0) ~< w. 

5. PROOF OF T H E O R E M  1 

We show tha t  there exists the a.s. limit q~(t, r c) = lim %(t,  oJ, c) as V 
tends to R 2, and cp is the unique tempered  s t rong solution. The p roof  is based 
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on the following quasi-Lipschitz p roper ty  of  the r ight-hand side of  (I) and 
(Jr) :  in view of  (U) we have 

Ft( )l LI/I*'I (23) 
k j~g~" J 

where 

L1 = L[max{g2(lxt(a,)]) W(~), g2(Ixt(~)l ) W(m)}] d 
Jr' = {i E I ;  min{t&(co ) - xj(o~)[, [x,(~) - x~(~)l } ~< R} 

The  cardinali ty ]d/I of  J / c a n  be es t imated via (13). 
The  external field h = hv in (Jr) is a lmost  a rb i t ra ry ;  we assume that  

hv(x) = 0 even if the distance of  x f rom the boundary  of  V is larger than R. 
Consider  now the t ime evolution of  

d(co, c~, y, p) = ~ f ~ f ~ ( l &  - 2~[ 2 + [vt - ~[2) (24) 
i~ l  

along two solutions to t and ~t  o f ( I )  or  (Jr);  here and in what  follows the usual 
abbreviat ions xt = x~(oJ), vi = v~(oJ), & = xt(~), ~i = vt(~) are u s e d ; f  , f / a n d  
f ,  f /  denote the value and the derivative of  f a t  p - [x~ - y[ and at  p - 
[& - Yl, respectively; Dy(p) is the disk of  center  y and radius p > 0. 

Let  tot = q~v(t, o~, e), ~ = q~7(t, oJ, e); then x~, &, and v~ - ~ are differ- 
entiable functions of  t ime;  thus 

(d/dt)d(%, Gt, Y, P) 

-< ~ ( f , ~ l <  + f , ~ ' [ < ) ( / x t  - xtl ~ + 1~, - ~,l ~) 
iE1 

+ 2 ~ , f f ~ l  v, - < [ I x ,  - x,I + al~t - ~tl + IF,(~,,) - F , (< ) I ]  (25) 

provided that  Dy(p + 4R) c V n V. Observe t h a t f '  is a bounded  function;  
further,  2]vt - vii ]xj - &[ ~< ]xj - :Z~[ 2 + Ivt - gd2; thus d '  can be esti- 
mated  by d(%, mr, y, p + 4R) as follows. Substi tuting (23) into (25) and 
e s t i m a t i n g  I < ,  t~*[, and IJ/[  via (12) and (13), we obtain tha t  there exists a 
constant  Lz depending only on U such tha t  

(d/dt)d(oJt, ~t,  Y, p) <~ QM~d(wt, ~t, Y, p + 4R) (26) 

where the sequence M~ = M~(y, p) is defined by the recursive formulas  
Mo(y,  p) = 1, M~(y, p) = g2a+~(]y[ + p), and 

M~(y, p) = (1/n)M~_~(y, p)M~(y, p + 4Rn - 4R) 

if n > 1; fur ther  

Q = Q(t, coo, No) = sup L2[max{1, W(m~), W(N~)}] a+a/z (27) 
s ~ t  
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Therefore  

sup d(02s, ~s, y, p) 
s~<t 

. J  

<~ d(02o, ~o, Y, p) + Q(t, 020, No)Ml(y, p) Ji" d(w~, ~ ,  y, p + 4R) ds (28) 

holds for  each t > 0 with probabi l i ty  one, provided that  Dy(p + 4R) c 
V n V. Let  us r emark  that  (28) remains in force even if to t and toz are tem- 
pered s t rong solutions of  (I); in this case no restriction is needed on y and p. 
I tera t ing (28) as m a n y  times as possible, the basic tool  o f  this section is 
obtained.  

L e m m a  4. Let to t and tot denote either t empered  strong solutions of  (I), 
or tot = Cpv(t, 02, e), Nt ~ cPv(t, 02, e) with Dv(p + 4Rn) c V n V. Then  there 
exists a constant  La depending only on U such tha t  

sup d(02~, ~s, Y, P) 
s ~ < t  

<~ LaM,(y,  p)Q~+ 2(t, OJo, No)n4t ~ 
r~-- i  

+ ~ [tQ(t, 020, No)]kM~(Y, p)d(02o, ~o, Y, P + 4kR) 
/ c = 0  

holds with probabi l i ty  one for  each t />  0 and y ~ R 2, p > 0 satisfying 
p <<. 4Rn and p + 4Rn /> g(]y]).  

Proof. I terat ing (28) n - 1 times, we obtain that  

sup d(02~, ~ ,  y, p) <<. tnQ"M,  sup d(02~, ~ ,  y, p + 4Rn) 
s<~t s ~ t  

n - 1  

+ ~,  t k Q"Mkd(02o, ~o, y, p + 4kR) (29) 
k = 0  

O n t h e  other  hand,  using Ix~ - 2= I ~< 4(p + 3R) and 

Iv= - vd = < 2(Ivd = + ]0,[ =) 

in (24), it follows by L e m m a  1 that  

d(02, ~, y, p) ~< k4p 4 max{ W(02), W(~)} (30) 

whenever  p > g( ly]) ;  L4 is a universal  constant.  A compar i son  of  (27), (29), 
and (30) results in the s ta tement  of  the lemma.  

We can consider d(02t, ~Tt, y, p) as a reasonable  measure  for  the deviation 
of  solutions f rom each other  only if we a priori  know that  the particles are 
localizable, i.e., x,(ah) remains in a control lable ne ighborhood  of  x,(a~0). 

Proposition 2. Let  tot denote  either a t empered  strong solution of  (I) 
or tot = ~ov(t, oa, c), and  suppose tha t  W(020) ~ w, w > 1. Then for  each 
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t >/ 0, y ~ R  2, there exists a positive e = E(t,y, w) such that  p /> 4r > 0 
implies that  

P ]  sup suplxi(eos)-  Y[ > P] ~< exp(1 - r  
ki~y(y,r) s<~t J 

where J(y,  r) = {i ~ I ;  Ix~(o~o) - y[ ~ r), and q = qw(t) is the same as in 
Proposi t ion 1. 

Proof. Let S denote the minimal radius such that  x~(w~)e Dy(S) if 
s <. t, i E J ( y , r ) .  Since ]x,(o~)[ ~< lyl + S a n d  

t 

Ix , (%) - Yl ~< r + lx,(o~) - x,(o~0)] ~< r + Jo 1~,(o~31 ds 

in this case, in view of  (12) we have 

S <<. r + alg([y] + S)z( t )  (31) 

where z(t)  has been defined in (16). Using the subadditive property of  g and 

g(S)  ~< 1 + ~/S-, it follows that  

S ~< r + al[1 + g([y]) + ~/S-]z(t) 
Thus  

~/-S <~ ~/r + Lsz( t)  

provided that  r ~< S;  L5 is a new constant  depending on y. Hence 

S <~ 2r + 2L52z2(t) <~ �89 -t- 2(tLs) 2 sup W(o)~) (32) 
s~t 

follows directly, and (32) holds even if S < r. Observe now that  e = 
E(t, y, w) > 0 can be chosen to be so small tha t  

2(tLs) 2 exp[qw(t)g(u)] = 2(tL~)2eq(1 + u) q <~ �89 

holds for  u = Ep z/q - 1; q = q~(t). This means that  P(S > p) ~< e ~-~ in 
view of  Proposi t ion 1, which proves Proposi t ion 2. 

N o w  we prove the existence o f  limiting solutions. Remember  that the 
weak topology  of  ~o is defined in the following way. For  each finite J ~ I 
set  

1 '~  - ~ 1 ~  = [ tx~(o~)  - x, (~)I  ~ + I~,(o~)  - ~ , ( ~ ) 1  ~1 ~ ( 3 3 )  

Then lirn 6o. = oJ means that  lim[~o - ~o.[j = 0 for  each finite J ~ L Due  to 
Proposi t ion 2, ]o)t - '~tlJ(y.~) can be estimated by [d(oJ~, ~t, Y, p)]~!2 with a 
probabil i ty close to one if p is large enough.  

Let o~ e ~20, V. = Do(8Rn + R), and tot" = q)v.(t, o9, c); we may assume 
that  the external field h = h.  in (Jr.) has been chosen in such a way that  
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sup W(~oo ") ~< w < + m  and w /> 1. We want  to apply L e m m a  4 and Propo-  
sition 2 to tot = to~+m and ~ t  = tot +re+l, where m ~ I is fixed, r = Rm,  and 
y = 0. Propos i t ion  1 implies 

P{Q > L2 exp[(d + 1/2)qw(t)g(u)]} <<. 2e -~ 

for  Q = Q(t, ~Oo, ~o), and the s imultaneous bound  of  Proposi t ion 2 for tot 
and  Gt is 2 exp(1 - ~pl/q), with q = qw(t) and E = ~(t, 0, w). Put  p = 4Rn in 
Proposi t ion  2 and  in L e m m a  4, and  u = 2g(n) in Proposi t ion l ;  since 
dt ,+m ,+m+~ O, + 4 k R ) = O i n L e m m a 4 a s k ~ < n ,  w e o b t a i n t h a t  kr , r , i 0 

~< 2 e x p [ - 2 g ( n ) ]  + 2 exp[1 - E(4Rn)~'q (34) 

where J(r)  = {i ~ I ;  [xt(co)] ~< r} and 

8,(t, w) = t~LaL"+2n*t2 "M,(O, 4Rn) exp[q(n + 2)(d + 1/2)g(2g(n))]} 112 

I t  is easy to check tha t  ~ 3,(t, w) < + m  and the sum over  n of  te rms on the 
r ight -hand side of  (34) is finite, too ;  therefore  the Borel-Cantel l i  l emma  
implies 

- e.% :c~) < + o o  = 1 ( 3 5 )  
L s~t n = l  

for  each t > 0, r = R m  if m e I, which proves  tha t  there exists the limit 
~0(t, oJ, c) = lim ~Ov,(t, oJ, c) with probabi l i ty  one for  each co E ~20 . 

We have to verify that  ~0(t, co, c) is a t empered  strong solution. Since W 
is a lower semicont inuous funct ion of  o~ ~ S2o, we have W(q~(t, ~o, e)) <<. 
lim inf W(q~v,(t, o~, e)) a.s.; further,  W/>  0; thus the Fa tou -Lebesgue  
theo rem and Proposi t ion  1 imply tha t  

- r s u p  W(~o(s, oJ, e)) P(de) ~< lim inf sup W(~ov.(s, oJ, c)) P(dc) ~< pw(t) (36) 
~ C  s<~t 

if  W(co) ~< w, where p~(t)  is a cont inuous funct ion of  t > 0 for  each w ~ + m .  
Hence  

kS~t  

Thus  the interparticle distances in co~ = ~(t, oJ, c) are positive with probabi l i ty  
one;  consequently tot satisfies (I ').  The measurabi l i ty  propert ies  of  ~ are 
direct consequences of  those of  ~Ov,; as a solution of  (I ') ,  ~o is automat ica l ly  a 
M a r k o v  process,  while temperedness  of  ~o is just  (37). Uniqueness of  tem- 
pered s t rong solutions and their cont inuous dependence on initial data  are 
a direct consequence of  the following result. 
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Proposition 3. Suppose that  to t and ~t  are tempered  s t rong solutions 
of  (I) with max{ W(coo), W(~o)} ~< w, w t> 1. Then for  each sequence u~ >/ 1, 
t > 0, y e R  2 ,o  >/ 4r > 0 w e h a v e  

PJsuploJ ~ - ~[~(~,~, > D(t, OJo, ~o, Y, P, w, uk)] 
Ls<~t J 

~< 2 exp(1 - Ep ~/q) + 2 ~ e x p ( - u k )  
k = 0  

where J(y, r)  = {i e I ;  min{Ix~(coo ) - y], [x~(~o) - Yl} ~< r}, q = q~(t) and 
= c(t, y, w) are the same as in Proposi t ions  1 and 2, and 

D2(t, Wo, ~o, Y, P, w, u~) 

= ~ (L~t) ~ exp[qk(d + 1/2)g(u~)]Mk(y, p)d(~oo, ~o, Y, P + 4kR) 
k = 0  

Further ,  D is finite, e.g., if u~ increases as fast  as a power  ofg(k) ,  and in such 
cases lim coo" = co implies l im,  D(t, COo, OJo ~, y, p, w, uk) = 0, provided that  
W(~,o ~) ~< w. 

Proof. Let n go to infinity in L e m m a  4; then the s ta tement  follows f rom 
Proposi t ions  1 and 2 in the same way as (34) has been obtained.  

As a direct consequence of  Proposi t ion 2, we obtain that  lira co0" = o~ 0 
implies 

lim P(supI~%~\~.<t - ~o~],(y.~) > D )  = 0 (38) 

for  each t > 0, D > 0, y e R 2, and r > 0, which is a s t ronger  s ta tement  than 
that  o f  Theo rem l abou t  cont inuous dependence on initial data. 

6. PROOF OF T H E O R E M  2 

First  we show that  the canonical  Gibbs  distributions at  t empera tu re  
T = cr2/2A are invariant  under  the M a r k o v  t ime evolution defined ,by (Jr). 
Let  OJv and o~v c denote the configurat ion inside V and that  outside V, re- 
spectively, i.e., ~o = (~Ov, cove). We may  assume tha t  the particles inside V are 
numbered  by 1, 2,..., n; the configurat ion ~ov c of  frozen particles and the 
number  n = IJv(~O)] of  moving  particles are fixed. Then fv(oJvjoJvQ = 
Z -1 exp[ - (1 /T)Hv(oJ ) ]  is the density of  the canonical  Gibbs  distribution in 
V with respect to the 4n-dimensional  Lebesgue measure ;  T > 0 is the tem- 
pera ture ;  the total  energy Hv = Hv(oJ) is explicitly defined before (6). 

Fo r  nota t ional  convenience set x~ = (q2i-1, q2i) and v~ = (P2i- l ,P2i)  if 
i = 1, 2 ..... n, and let P~ = ~/Op~ and Q~ = O/~qt denote the opera tors  of  
differentiating functions of  COy with respect to p~ and qt, respectively. Then the 
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generator  G of  the M a r k o v  process rpv defined by (Jr) can be writ ten as 

2n 

G = ~.. [{~2p 2 _ Ap ,P~-  (Q~Hv)P, + p~Q,] (39) 
i .=1  

and the fo rmal  adjoint  G* of  the differential opera tor  G is acting as 

2n 

G * f  = E {�89 2f + 2tP~(p~f) + P~[(Q~Hv)f] - Q~(pff)} 
i = l  
2n  

= E [�89 2f + ,~f + ~p~p~f + (Q~Hv)(P~f) - p ~ Q ~ f ]  (40) 
'~=1 

Since P~fv = - T -  ~P~fv, P~fv = - T -  ifv + T -  ~P~fv, and 

Q~fv = -T-~(Q~Hv) fv ,  
we have 

0.2 0"2 2n 

so tha t  f v  satisfies the s ta t ionary K o l m o g o r o v - F o k k e r - P l a n c k  equat ion 
G * f  = 0 if and only if T = 0"2/2~. 

Suppose now tha t  ~ is a canonical  Gibbs  state for U at  t empera ture  
T = ~2/2A; ~ is a probabi l i ty  measure  on (ft0, G0) such that,  given COy c and 
the number  n of  particles in V, the condit ional  density of  ~ is justfv(oJvlcov c) 
with h = 0 in the definition o f f v .  Let Vn = Do(4Rn) and choose the corre- 
sponding external field hn = h.(x) in such a way that  lira f h.(m)dtL = 0, 
where 

Since k .  >/ 0, this implies tha t  Z .  - f e x p [ -  T -  lk.(,o)] dt~ goes to one;  thus 

( [Z. -1 e x p [ -  T -  lh.(~o)] - 11 d~ = lira 0 
[ 

follows again by the dominated  convergence theorem;  i.e., the probabi l i ty  
measures  t~. defined by d/~. = Z . -  1 exp [ -T -~h . (~ , ) ]  d/~ converge to tx in the 
var ia t ion distance. On the other  hand,  the condit ional  density o f /~ .  with 
respect  to the Lebesgue measure,  given ,or. c and the number  of  particles in 
V., is justfv.(~ov.loJv~ ~) with h = h. ;  therefore t~n is invariant  under  the follow- 
ing part ial  dynamics:  particles inside V. are moving  according to (.Iv.), while 
the posit ion and the velocity of  external particles remain the same as at t ime 
zero. Let  Ptn denote the M a r k o v  semigroup of  the above partial  dynamics;  
we have shown t h a t / ~  = t~Pt  ~, i.e., t~  = /~Pt ~ - /~Pt" + /zPt" .  We know 
tha t /x ,  converges to t~ in the variat ion distance; thus lim(t~.P~" - /~Pt") = 0, 
again in the var ia t ion distance. Fur ther ,  as q~(t, ,o, e) = lira ~ov.(t, ,o, e) a.s. 
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for each ,0 ~ ~0, it follows that lim t~Pt ~ = txPt holds in the sense of weak 
convergence of probability measures, i.e., t~ is invariant under Pt. 

To prove the "only  i f"  part of Theorem 2, consider the time evolution 
of Hi(o~) along the general solution oat = ~o(t, oJ, e) of (I), where 

Hi(ca ) = ~ f(x,(oJ))H,(o~) 

H~(oJ) = �89 2 + �89 ~ U(x,(oJ) - xj(oJ)) 

and f = f ( x ) ,  x ~ R 2, is a continuously differentiable function of compact 
support. Let H/(oJ) denote the time derivative of Hi(m) at ~ = ~t along the 
solution ~t of (I) in the classical case of A = ~ = 0; we have 

H/(~o) = ~. (gradf(x,),  v~)H,(oJ) 

+ �88 ~ ~ [f(xj) - f(x~)](grad U(x,  - xj), v, + v,) 

with the usual notation x~ = x~(oJ), v~ = v~(<~); therefore 

[, 

+ f ( x , ) (a  2 - a]v,[ 2) ds (41) 

follows by the Ito lemma. Suppose now that ~ is a canonical Gibbs state for 
U and temperature T > 0, and /~ is time-invariant, i.e., tLt = tLPt = t~ for 
each t /> 0. Then the coordinates of v, are Gaussian random variables of zero 
mean and variance T; further, each v~ is independent of the positions of 
particles; thus ff(x,(o~))lv,(o~)12 t~(d~) = 2 T f  f ( x , (w) )  tz(dw), and f H/(oJ) tz(&o) 
= 0. On the other hand, the expectation of the stochastic integrals in (41) 
with respect to P is zero, since the expectation of 

t 

[ ))1( )12d  2 X~ o)  s U i Co s 

',' 0 i ~ l  

is finite in view of Proposition 1 ; thus, taking the expectation of both sides 
of (41) with respect to the product measure/~ x P, it follows by ~t = /* and 
the Fubini theorem that 

(a 2 - 2aT) f ~ f(x~(oo)) ~(dw) = 0 
J 

for each f ,  which proves the last statement of Theorem 2. 
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7. PROOF OF T H E O R E M  3 

Let cot = ~ .o( t ,  o~, c), ~ t  = ~0(t, o~), A > O, ~ > O, and ~ = max{A, ~} < l. 
We have to repeat  the p r o o f  of  Proposi t ion 3 in the modified si tuation when 

oJ0 = ~o and v~ = g, has a p roper  stochastic differential, namely  

d(v~ - ~)  = - [F,(oh) - F,(~t)] dt - Av~ dt + a dw, 

Set dn(t, p) = d(oJt, Nt, O, p + 4Rn) with p /> 4r /> 1 fixed; then, following 
the lines of  the p r o o f  of  (26), we obtain  by the I to  l e m m a  tha t  

d.(t, p) <~ QMi(0,  p + 4Rn) d.+l(s, p) ds + Z . ( t )  

where Q is the same as in (27) and  

Z. ( t )  = f f [ 2 a  2 - 2A(v, - e,, v,)] ds + 2~ ~ . f f ( v ~  - V~) dw, (42) 

The  exponential  supermar t ingale  inequality (see the p r o o f  of  L e m m a  2) 
implies tha t  the probabi l i ty  of  

[ ( sup.2(~ _ - - -  y f 2 f 2 I v  , - g,]2 ~< ~(p + n)2 (43) 
t~~ do r 

exceeds 1 - e x p [ - 2 ( p  + n)2], where 

~ e x p [ - 2 ( p  + n) z] < e -~  
n = 0  

as p /> 1. On the other  hand,  the determinist ic integrals in (42) and in (43) 
can be es t imated by a constant  multiple of  etQZ(p + n)2; thus, combining  
(43) and  the above inequality, we obtain  tha t  for  t ~< tl 

J; sup d,(s, p) <~ QMz(O, p + 4Rn) d~+z(s, p) ds + eL6Q2(p + n) 2 (44) 
s<~t 

holds s imultaneously for  each n with a probabi l i ty  larger than  1 - e-D; L6 
depends only on U and q .  I tera t ing (44), we obtain tha t  

P [ s u p  d(o),, ~ , ,  O, p) ) eS(A, a)] ~< e - "  (45) 
L s<t J 

where the r a n d o m  variable S(A, ~) is given by 

s(;~, ~) = L6 ~ rM~(O, o)(e + .)~O~+~ 
r~=6  
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Fur the r ,  choos ing  u = 2g(n + m) in P ropos i t ion  l ,  it  fol lows tha t  

S(A, or) ~< ~ L d ~ M , ( O ,  p)(p + n) 2 exp[q(n + 2)(d + 1/2)g(2g(n + m))] 
g m 0  

holds  wi th  a p robab i l i t y  la rger  than  

1 - 2 ~ e x p [ - 2 g ( n  + m)] /> 1 - 2/m 
n = 0  

where  q = qw(t) does not  depend  on  A ~< 1 and  cr ~< 1. Therefore  the tai l  of  
the d i s t r ibu t ion  of  S(A, or) is un i fo rmly  bounded ,  i.e., eS(A, e) converges to 
zero in p robab i l i t y  if  e = max{A, e} goes to zero,  so tha t  the compar i son  of  

(45) and  of  P ropos i t ion  2 results  in the  s ta tement  o f  T he o re m 3. 
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